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A NEW ALGORITHM 
FOR CONSTRUCTING LARGE CARMICHAEL NUMBERS 

GUNTER LOH AND WOLFGANG NIEBUHR 

ABSTRACT. We describe an algorithm for constructing Carmichael numbers N 
with a large number of prime factors P1, P2, a Pk This algorithm starts with 
a given number A = lcm(pi - lP2 - 1,... Pk - 1), representing the value 
of the Carmichael function A(N). We found Carmichael numbers with up to 
1101518 factors. 

1. INTRODUCTION 

A commonly used method to decide whether a given number N is composite is 
the following easily practicable test: Take some number a with gcd(a, N) = 1 and 
compute b - aN-l mod N. If b + 1, our N is composite. Unfortunately, if we get 
b = 1 we cannot be sure that N is prime, even though this is true in many cases. 
A composite number N which yields b = 1 is called a pseudoprime to the base 
a. If some N yields b = 1 for all bases a with gcd(a, N) = 1, this N is called an 
absolute pseudoprime or a Carmichael number. These numbers were first described 
by Robert D. Carmichael in 1910 [3]. The term Carmichael number was introduced 
by Beeger [2] in 1950. The smallest number of this kind is N = 3. 11. 17 = 561. 

Studying the properties of absolute pseudoprimes, Carmichael defined a function 
A(N) as follows: 

A(2h) = f(2h) for h = 0, 1, 2, 

A(2h) = 29(2) for h > 2, 

A(qh) = o(qh) for primes q > 2, 

A(qhl1q 2h qhr) =lcm(A(qh1), A(qh2),..., A(qrb)) for distinct primes qj, 

where p denotes Euler's totient function. Other authors later called the function 
A(N) the Carmichael function. Carmichael [3] showed that N is an absolute pseu- 
doprime if and only if 

,1 N = 
, . 

(mo ,A(N) ) 
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He also showed that absolute pseudoprimes are a product of k distinct odd primes 
Pk, k > 3. Later we will use the following properties of Carmichael numbers: 

(a) For Carmichael numbers N = P1P2 ... Pk the value of the Carmichael function 
is A(N) = lCm(p1 - l,P2 - 1 , . ,Pk - 1). 

(b) Let N be a Carmichael number with A(N) = A. If p = A + 1 is prime and 
N # 0 (mod p), then Np is also a Carmichael number. (This is a special case 
of Chernick's Theorem 4, [5].) 

(c) There are no natural numbers n, q such that q and nq + 1 are both prime 
factors of a Carmichael number N (see Yorinaga [25]). 

In his first paper on this subject [3], published in 1910, Carmichael presented 
four absolute pseudoprimes including the well-known example 3 11 17. The others 
are 5 13 17, 7. 13 . 31, and 7. 31. 73. Two years later, he mentioned 11 more 
absolute pseudoprimes with three factors, and he also found one with four factors, 
which is 13 . 37. 73 . 457 [4]. A larger quantity of absolute pseudoprimes was first 
determined by Poulet [18] in 1938. 

Chernick [5] made some essential contributions to the theory of Carmichael num- 
bers. In 1939, he introduced the universal form 

k-2 

Uk(m) = (6m + 1)(12m + 1) f (9. 2m + 1) 
i=1 

which generates Carmichael numbers if all its factors are prime. Also, he con- 
structed Carmichael numbers with up to seven factors. 

Carmichael numbers with a large number of prime factors were investigated in 
particular by Yorinaga. In 1978 he gave many examples with up to 15 factors [25], 
and two years later in [26] he published a long table of Carmichael numbers with a 
number of factors in the range from 13 up to 18, culminating in 

N1 = 17*19 23 29*31*37*41 43*61*73 79 89 101*109*113*127*131 1783, 

N2 = 19 23 29*37 41*61*67*71 73 79 89*101 103 113 127 131*137*4421. 

Recently a new interest in large Carmichael numbers has arisen. By systematic 
search, Pinch [16] found 

N = 11*13 17*19*29*31 37*41 43 61*71 73*97*101 109 113 151 181*193 641, 

which is the smallest Carmichael number with 20 factors. Zhang found a Carmichael 
number with 1305 factors [27]. Guillaume and Morain found several Carmichael 
numbers, the largest one built from 5104 factors [9]. Furthermore, Pinch tabulated 
all Carmichael numbers up to 1016 [17]. In [16], a survey of other efforts to count 
Carmichael numbers is given. 

Simultaneously to the work of Yorinaga, other authors tried to construct Carmi- 
chael numbers with many decimal digits using only a few large prime factors. In 
1979, Hill found a Carmichael number with three factors and 77 digits [11]. In 1980, 
Wagstaff published a Carmichael number with 101 digits of type U6(m) and an- 
other one with 321 digits of type U3 (m) [23]. To the latter, Woods and Huenemann 
successfully added one more prime factor obtaining a new Carmichael number with 
four factors and 432 digits [24]. In 1989, Dubner [6] published a 1057-digit num- 
ber of type U3(m) found in 1985. Furthermore, he described an improved method 
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for constructing large Carmichael numbers with three prime factors. Using this 
method he found a 3071-digit number in 1988. 

As we have seen, the construction of large Carmichael numbers is often based 
on the universal form Uk (m) introduced by Chernick. The numbers so constructed 
have only a few but large prime factors. The difficulty in using this form to produce 
Carmichael numbers with a large number k of prime factors is the fact that k 
mutually dependent numbers (6m+ 1), (12m+ 1), (9*21m+ 1), ..., (9.2k-2m+ 1) 
must be prime simultaneously. This problem also occurs in some similar situations, 
see [19] for primes in arithmetic progressions, [14] for prime chains, and [22, Chapter 
3] for prime constellations. In no case could more than 22 of such interrelated primes 
be determined. Inspecting the approaches suggested in all these situations, we found 
the use of universal forms to be of no avail in constructing Carmichael numbers with 
substantially more prime factors. Therefore we initiated the development of a new 
method. 

2. THE GENERAL ALGORITHM 

In order to construct a Carmichael number N, we start with a given value A and 
assume A = A(N). We then generate all possible prime factors of N according to 
the properties (a) and (c). This approach is similar to that proposed by Erdos in 
[7]. Let S denote the set of all these possible factors, and let s be the number of 
elements of S. We compute the product modulo A of all primes in S and call it s. 
If s equals 1, the product of all primes in S will constitute a Carmichael number 
because of (1), but usually s takes some other value. In this case we try to find a 
small subset T of primes in S whose product modulo A also equals s. If we discard 
this subset from S, the remaining primes will constitute a Carmichael number with 
k = - #T factors. This idea leads to 

Algorithm C 
C1 [Start]. Choose an appropriate product of prime powers A <- ql1q22 ...qr 

(with qi = 2 and hj > 0 for all j). 
C2 [Combine qj]. Build all 

p(al, t2v , .. a ) 2 q2 rr 

with 1 < a1 < h, and 0 < aj < hj for j > 1. 
C3 [Collect admissible factors]. Put all P(al, a2,. a.r), if they are prime and 

different from every qj, j = 2, 3, ... , r, into the set S. If A + 1 E S, set 
S <- S - {A + 1}. [In this case, every Carmichael number with A(N) = A 
found by the algorithm can be multiplied by A + 1 to give another Carmichael 
number, see property (b).] Build s <- (1JPES P) mod A. If s = 1, set T <- 0 
and continue with C5. 

C4 [Find T]. Find a set T c S with JlpET P s (mod A). 
C5 [Construct Carmichael number]. Now 

N= r P 
pesNcr 

is a Carmichael number. 
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Remarks. The algorithm does not always guarantee A(N) = A, but only A(N) I A. 
Since N _1 (mod A) by construction, we also have N 1 (mod A(N)), and N 
is still a Carmichael number even if A(N) 7& A. However, it should be noted that 
A(N) 7& A occurs only in some rare cases where #S is small or #T is large. 

In order to find Carmichael numbers with many prime factors, we try to choose 
the prime powers qh in step Cl in a way that we get a large ', = #S in step C3. 
It seems reasonable to strive for a large number of P(al, o2,... lar) in 
order to have good prospects of obtaining many primes in step C3. The 
number of P(ali, a2, - . ,a) built in step C2 is called H(A). This number equals 
hl FlJ-=2(hj + 1), and for a given order of magnitude for A it becomes large if A is 
a product of suitable powers of small primes. On the other hand, we should try to 
keep A small so that the numbers P(l , a2, ... I ar) are small, too. This makes it 
easier to perform the primality proofs needed in step C3. 

We may use so-called highly composite numbers n, which were first investigated 
by Ramanujan [20] in 1915. With respect to their size, these numbers have ex- 
traordinarily many divisors, and therefore H(n) is large. The last highly composite 
number given in a table by Ramanujan yields H(n) = 8640 and s = 2339. Instead 
of extending this table we start with a given A and try to modify some exponents 
hj in order to increase H(A) without increasing A too much. 

If we proceed in this way we get many of the same primes within the accompa- 
nying sets S. So we may use primes taken from a previous set S produced by a A 
already treated when dealing with a new large A, therefore avoiding repetition of 
the primality proofs. We did not implement this because it would have involved an 
inordinate amount of administrative work. Especially for large A, step C3 becomes 
the most time-consuming part of the general algorithm. Since for each p E S the 
factorization of p - 1 is known by construction, we used primitive roots for the 
primality proofs [12, p. 375, p. 395, 609 (exercise 10), p. 397, 614 (exercise 26)]. 

An approximation of i,. The number i, of elements in S is an upper bound for 
the number k of factors of the Carmichael number to be constructed. It would be 
desirable to know a priori how many of the P(ali, ?l2,... , Ir) will be prime in step 
C3. 

In order to develop an approximation K(A) t s, we proceed as follows: The 
probability of a randomly chosen natural number n to be prime is about 1/log n 
(see, e.g., [8, p. 111]). We look at H(A) numbers of the kind p(ai,a2, a,). 
For each number p(al , a2,... , ar) - 1 < V"7ii there is exactly one corresponding 
number p(hi - a, + 1, h2- a2, .. ., hr - a.r) -1 > V27_A and vice versa. The product 
of both these numbers is equal to 2A. We therefore assume the average size of the 
numbers P(ali, cE2, ... , ar) to be v/2N. Assuming these numbers are indeed chosen 
randomly, about 

(2) H(A)/ log v 

of them would be prime. 
However, owing to our special construction of the p(ali, ?2, , ar) in step C2, the 

remainders modulo any prime qj are not uniformly distributed, and we can expect 
more primes than predicted by (2). To take into account the actual distribution of 
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the remainders modulo qj we multiply (2) by a correction factor and define 

_ _ A~r I 1 

log =2A I ( 1? (3) H(A) ~~~~~ j2 q31 

The correction factor can be obtained by considerations similar to those used by 
Hardy and Wright studying the distribution of twin primes [10, pp. 371-373]. For 
every qj, j = 2, 3, ..., r, we have p(aE1, c2, . . ,r) = 2a'q2 qj 

. qr +1_1 

(mod qj) if and only if 1 < a; < hj. The remainder 1 therefore has the proba- 
bility hj/(hj + 1) to occur. The other qj - 1 remainders modulo qj are uniformly 
distributed and have the probability 1/(hj + 1) altogether. Each of these has the 
probability 1/((qj - 1)(hj + 1)), especially the remainder zero. This leads to the 
probability 1-1/((qj-1)(hj+ 1)) instead of 1-1/qj for qj to divide p(aE1, ?2 .... ,) - 
For j = 1, that is qi = 2, we get an additional factor of 2 since all P(ali, a2,... , a.r) 
are odd by construction. 

Equation (3) can also be written as 

(4) K(A) = [h(A)log I j(hJ +?qj_ - 

We used approximation (4) to select appropriate values of A as input for our algo- 
rithm. For sufficiently large A, the observed relative error was always below 3%. 

Continuing the algorithm. In practice we will not terminate the algorithm after 
having found a single T in step C4. It turns out to be fairly easy to get more 
suitable sets T at virtually no additional effort. The details of this continuation 
depend on the implementation of step C4 and will be discussed in ?3. 

Example. In step Cl we choose the highly composite number A = 5040 = 2 .32 
5 7. With this we combine a total of 4 3. 2 . 2 = 48 values p(ac1, aE2, a3, al4) in step 
C2. According to (4) we expect K(A) = 30 in step C3, and we construct the set 

(5) S = {11, 13,17,19,29,31,37,41,43,61,71,73,113, 

127,181,211,241,281,337,421,631,1009,2521} 

with s = #S = 23 elements. We compute s <- (JPEJS p) mod A = 929. Now 

there is a total of E20 (23) = 8388331 ways to choose a set T in step C4, and 
p(A) = 1152 different values of (JJ1E,-p) mod A can occur. So there is a good 
chance to find a T in step C4. Later on we will take up this example again. 

3. HOW TO FINDT 

Step C4 can be performed by various methods. We observe that there are at 
most p(A) different values of (JJp,- p) mod A. Assuming these remainders to be 
uniformly distributed, the probability for jlpET P- a (mod A) will be 1/p(A). On 

the other hand, there is a total of - (p) possibilities to pick a subset T C S. 
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So, when we check all possible sets I, we expect about Etot (A) = (K-3 (K) )/(A) 
Carmichael numbers; usually there are plenty. 

The simplest way to find a suitable set T is to look for a random set T C S 
and check whether FJ7p p- s (mod A). A more deterministic method tests all 
subsets T c S. Owing to the large number of possible sets I, which cannot all 
be checked, we first choose a fixed p < s - 3 and then test only the sets with 
#T - p. In order to reduce the amount of guesswork, for any selected set T' c S 
we calculate u <- (s/ FJcr, p) mod A. If u E S, we set T <- T' U {u}. For 
implementations of such algorithms see Guillaume and Morain [9]. We can do even 
better if we build pairs (u, v) E S x S and then check if there is a corresponding 
pair (u', v') E S x S with u'v' _ s/(uv) (mod A). To check this condition we 
have to create two tables containing the values uv mod A and s/(uv) mod A for 
any combination (u, v) E S x S. The most important limitation of this approach 
is that we will find Carmichael numbers with exactly i, - 4 factors only. Another 
disadvantage is the huge amount of memory required to store the tables. 

After considering all these methods we decided to start from scratch and con- 
struct a set T by selecting T = {u} where u E S and then successively adding 
suitable elements from S so that finally flpE- p s (mod A). In order to perform 
the necessary calculations modulo A, we use a set of moduli Qj which are relatively 
prime in pairs to obtain a unique representation of the combinations of primes we 
will generate. The best we can do is to choose Qj = q> for j = 1, 2,. . ., r. Then 
A = IJ=1 Q3, and each possible prime factor p of the Carmichael number to be 
constructed has a unique representation modulo these Q3. Now let mj(p) denote 
the value p mod Qj. All necessary divisions by p modulo A can then be done using 
these numbers mj (p). 

Our algorithm starts by generating a table of mj (p), p E S and j = 1, 2,... ,r. 
Then we set t <- s and, by successively dividing t by suitable primes p E S, we 
try to achieve t = 1. In the representation t3 = t mod Qj, j = 1, 2,... , r, this 
can be done by increasing the number of moduli with t = 1 in every stage At of 
the algorithm. We do this by applying appropriate backtracking techniques on the 
table of the mj (p). For literature about such techniques see, e. g., [21, pp. 106-158]. 
To measure the progress of the algorithm, we define the function 

{ 0 if x mod Q3 1for 1 < j <r, 

Q(x) := i j otherwise 

for every natural number x. The values of the function Q(x) become smaller the 
more remainders x mod Qj are 1 in sequence for decreasing j. Using this function, 
we demand Q (t("+?)) < Q (t(")) for each stage At in our algorithm. 

Algorithm B 
B1 [Initialize]. For every p E S, compute the remainders m3 (p) <- p mod Qj, 

j = 1,2, ... r. [For fixed j, the m3(p) can take (q; - 1)q, 1 different values.] 
Initialize At <- 1, T <- 0, and t(Ot) < s. 
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B2 [Assign sets]. Set w Q (t(Q)), 

f ~~u E S -, TA 

A(A) < gu A Q(u)= w 

A m, (u) = t) 

'Lu,v E S K T 1 

()T~ Au<vl 
B(I1W{(u~v)A Q(u) =Q(v)=w 

A m,(u) m,(v) - t(l) (mod Q,,) 

u,vE S K,T 1 

I A u<vI 

C(H) <I(u, v) A Q(u) = Q(v) = w + 
A m,,+1 (u) m,+i (v) 1 (mod Q+i) 

A m^,(u) m (v)- = t( (mod Q,) 

B3 [Try element from AO()]. If A'() =A 0, select u E A(I), set A(A) A- A4G) .{u}, 
Z(') I- {u}, t(G+1) - t(A)/u mod A, and continue with step B7. 

B4 [Try element from B3(A)]. If B (G) 7 0, select (u,v) e B (I), set B (G) - BG') K 

{(u,v)}, z(G) <- {u,v}, t(A+1) < t(")/(uv) mod A, and continue with step 
B7. 

B5 [Try element from C(8). If C(8) 7 0, select (u,v) E C(8), set C(8) C K 

{(u, v)}, Z(G) <- {u, v}, t6'+1) 6 t(b)/(uv) mod A, and continue with step 
B7. 

B6 [Backtrack]. Set t ,u-t-1. If ,u > O, set T . T - Z(A) Q (6()), and 
continue with step B3, otherwise terminate the algorithm without finding a 
Carmichael number. 

B7 [Set T found ?]. Set T T U Z(Z). If t(l'+) =A 1, set ,t u- ,+ 1 and continue 
with step B2, otherwise we have found a suitable set T. 

Remarks. For the hj considered in this paper, each mj (p) can be stored in a two- 
byte integer, and all mj (p) will fit in 2rs bytes. 

The sets A(A), B(A) and C(8) do not require much calculation, since they repre- 
sent sections of a sorted table of p E S. This sorting can be achieved during the 
generation of P(a1, a2,... - ar) in step C2. The remaining calculations for B(G) and 
C(8) can be deferred until they are first used in step B4 and B5, respectively. 

When performing step B7, at most two primes are added to the set T. In view 
of the fact that any occasional execution of step B6 removes the same number of 
primes as previously added by step B7, in the stage ,t the set T contains at most 
2,u primes. The assignments in step B2 ensure Q (t(b+l)) < Q (t(A)). So, after at 
most ,t = r stages we have Q (t(bl)) = 0, which is equivalent to t6') = 1. Therefore, 
the algorithm is able to find Carmichael numbers with a number of factors in the 
range from i, - 2r up to i,. 

All arithmetic modulo A can be done using the representation modulo Qj. So we 
do not need to calculate t () but only t(<)j j = 1, ., r. The division (t ()/p) mod A 

is then done by calculating (tjj)/m3(p)) mod Qj, j = 1,..., r. The actual value 
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t0l) can be generated from the values t) using the Chinese remainder theorem, 
but this is not necessary for the algorithm to work. 

The selection of sets in step B2 can be justified by the following considerations. 
For a given stage it the set A(1") contains all primes u E S - T which directly 
match with t?8. For w large enough, the set A(At) will not be empty and the 
algorithm can proceed with the next it. However, for small w in B2 we normally 
have AO") = 0 because there are much more possible remainders modulo Q, than 
primes with Q(p) = w. In this case we try to combine the required remainder from 
pairs (u, v) with Q(u) = Q(v) -w. All matching pairs are put into the set B( ). 
Our experience has shown that in spite of all backtracking efforts these pairs are 
not always sufficient to find a suitable set T. For this reason we have introduced 
the set C(8), which contains matching pairs (u, v) with Q(u) = Q(v) = w + 1. We 
may consider taking additional sets D(8), EOA), ..., but we have not encountered 
any value of A for which the selection of sets given in step B2 failed to produce a 
Carmichael number. 

In order to find more than one Carmichael number using the same set S, we may 
record each T found in step B7, set T <- T Z(T ) and proceed with step B3. We 
can do this until we have found enough sets T or the algorithm terminates in step 
B6. 

Example. We now return to our example from ?2 where A = 5040. In step C2 we 
build the numbers P(al, a2, ... ar) by performing r nested loops on the aj where 
the index oai varies most rapidly. In this way, step C3 implicitly generates a table 
of all p sorted according to Q(p) in descending order. 
Step B1. We compute the remainders mi (p) <- p mod Qj, j = 1,2,3,4, 

and the values of Q(p) as follows: 
p pmod24 pmod32 pmod5 pmod7 Q(p) 

17 1 8 2 3 4 
13 13 4 3 6 4 
19 3 1 4 5 4 
37 5 1 2 2 4 
73 9 1 3 3 4 
11 11 2 1 4 4 
41 9 5 1 6 4 
31 15 4 1 3 4 
61 13 7 1 5 4 

241 1 7 1 3 4 
181 5 1 1 6 4 
~29 13 2 4 1 3 

113 1 5 3 1 3 
43 11 7 3 1 3 

337 1 4 2 1 3 
127 15 1 2 1 3 

1009 1 1 4 1 3 
71 7 8 1 1 2 

281 9 2 1 1 2 
211 3 4 1 1 2 
421 5 7 1 1 2 
631 7 1 1 1 1 

2521 9 1 1 1 1 
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We initialize it <- 1, T - 0, and 
t(1) ( 

1, t(l) 
(1 2 t(l) 4, t(1) - 5, calculated from s = 929. 

Step B2. We set w <- 4, 
A() {19,61}, 
1B(1) ( {(11, 17), (11,31), (11,37), (11,73), (11,241), (13,37), (37,181)}, 
c (l) 0. 

Step B3. A(1' ) {19,61} #A0, 
therefore we select u = 19 and we set A(1) < {61}, 
Z(1) - { 19}, t (2) +- 11, t 2) +- 2, t 2) - 1, t (2) +- 1. 

Step B7. T <- {19}, t(2) =#1, I < 2. 
Step B2. We set w <- 2, 

A(2) {281}, 
13(2) f {(711421)1> 
C (2) f (29, 1009), (1 13, 337)}. 

Step B3. A(2) {281} - 0, 
therefore we select u = 281 and we set A(2) <- 0, 

Z(2) <- { 281}, t (3) 3, t (3) +- 1, t33) +- 1, t (3) +- 1. 

Step B7. T -- {19,281}, t(3) + 1, IA - 3. 
Step B2. We set w - 1, A(3) - 0, B3(3) - 0, C(3) <- 0, all sets are empty. 
Step B6. We set ,t 2. 

[ Now are active 
-(2) = -, L(2) = {(71,421)}, C(2) {(29,1009), (113,337)}, 

(2) = {281}, t4(2) _ = 2 t2) = I t1(2) - 1. 
We set T -- {19}, 2. 

Step B4. B(2) = { (71,421)1} = 0, 
therefore we select (u, v) = (71, 421) and we set 3(2) < 0, 

Z(2) 0- { 71, 421}, t (3) (9, t3) ( 
1, t33) + 1, t(3) + 1. 

Step B7. T -- {19,71,421}, t(3) 1i, 8 <- 3. 
Step B2. We set w -- 1, A(3) < {2521}, L(3) <- 0, C(3) <- 0. 
Step B3. A(3) = {2521} - 0, 

therefore we select u = 2521 and we set A(3 <- 0, 

Z(3) <- { 2521}, t (4) - I, t (4) - I, t (4) - I t (4) +- 1. 

Step B7. T < {19, 71,421, 2521}, and we have t(4) - 1. 
With (5) we find N =H rIpSp = 11 . 13 .1729 .3137. 41 43 .6173 .113. 

127 181 . 211 . 241 .281 . 337 631 1009, a Carmichael number with 19 factors. 
Continuing the search, we find more sets T = {19, 29,631, 1009}, {61, 211, 281, 

631,1009,2521}, {43,61,113,631,2521}, {43,61,113,211,421}, {61,71,127,337, 
421,2521}, {29,61,127,337,631,1009}, {19,31,61,281}, {19,31,61,113,337,2521}, 
{19,61,113,127,241,2521}, yielding Carmichael numbers with 19, 17, 18, 18, 17, 
17, 19, 17, 17 factors respectively. 

4. COMPUTATIONAL RESULTS 

In this section we present some of the Carmichael numbers we found during our 
research. Because of the size of most of these numbers, we do not include all their 
factors, but only A, k, and T. In addition we supply the number d of decimal digits 
for each N listed.Unfortunately, this form of presentation leaves it to the reader to 
recompute the whole set S if he wants to get hold of all the factors. 
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TABLE 1. A Carmichael number for every k, 
21 < k < 100 characterized by A, d, and T 

k A d T k A d T 

21 19800 47 {31,199,397,9901} 61 739200 186 {13,29,3851,5281} 
22 12600 52 {11,13,71,281} 62 1524600 196 {61,73,211} 
23 10080 52 {13,19,29,211} 63 332640 184 {13,113,211,991} 
24 10080 53 {31,71,73} 64 2744280 198 {109,2377,25411} 
25 23760 58 {19,23,37} 65 846720 199 {13,421,2521} 
26 28080 60 {19,181} 66 5556600 220 {11,29,24697,370441} 
27 27720 64 {13,89,331,463} 67 604800 195 {401,2161,21601} 
28 27720 65 {41,421,661} 68 554400 199 {41,97,110881} 
29 32760 74 {11,37,43,547} 69 1247400 212 {29,109,331,7129} 
30 32760 72 {29,1093,8191} 70 1411200 220 {17,71,577,1801} 
31 25200 78 {11,13,31,73} 71 720720 218 {17,71,331,4621} 
32 25200 77 {11,19,4201} 72 1587600 221 {29,757,176401} 
33 30240 79 {11,43,2161} 73 1386000 224 {881,4201,18481} 
34 42840 87 {31,281} 74 1921920 233 {29,2003,960961} 
35 376320 99 {13,1471,5881,17921} 75 5670000 249 {11,41,43,337} 
36 1778700 110 {3301,3631,11551,12101} 76 17287200 266 {211,2801,54881} 
37 823200 107 {13,17,101,137201} 77 997920 237 {17,199,433,23761} 
38 508200 111 {211,15401,84701} 78 997920 238 {617,673,4159} 
39 141120 102 {11,181,2017,7841} 79 2268000 248 {3001,4001} 
40 161280 109 {11,37,71,26881} 80 4851000 264 {3001,19801,231001} 
41 161280 107 {673,2689,20161} 81 3528000 271 {11,31,2017,3361} 
42 90720 107 {113,2017,7561} 82 2522520 274 {29,547,126127} 
43 90720 110 {41,6481} 83 3175200 268 {11,281,1051,21601} 
44 470400 125 {17,337,78401} 84 1330560 260 {17,61,4481,8317} 
45 138600 120 {601,15401,19801} 85 2116800 273 {337,5881,211681} 
46 1190700 140 {71,883,1051} 86 25930800 308 {19,2161,21169,5186161} 
47 873180 135 {67,6469,32341} 87 4762800 290 {487,2801,158761} 
48 151200 127 {13,101} 88 1995840 275 {43,661,45361} 
49 241920 133 {11,379,577} 89 1441440 282 {89,241,18481} 
50 1358280 150 {71,991,271657} 90 12492480 318 {31,8009,35491} 
51 221760 138 {13,181,1321,2521} 91 8537760 321 {19,73,3361,32341} 
52 166320 143 {19,61,127} 92 8537760 322 {211,421,142297} 
53 3150000 170 {13,43,1051,126001} 93 26486460 343 {67,859,8581,25741} 
54 1323000 162 {13,541,12601} 94 4158000 309 {29,397,601,1051} 
55 2845920 183 {13,241,463,3631} 95 2217600 307 {73,1409,4481} 
56 403200 162 {61,127,211} 96 3880800 324 {19,661,1321,9901} 
57 360360 168 {73,89,9241} 97 8408400 346 {53,211,1301,2861} 
58 529200 169 {11,631,6301} 98 8408400 344 {463,4201,1401401} 
59 5880000 192 {7351,12251,735001} 99 7927920 343 {19,331,463,76231} 
60 7507500 211 {61,26251,50051} 100 7927920 346 {113,241,8009} 

We started our work in 1987 on an AT-compatible PC running DOS 3.1 and 
tried to find an example of a Carmichael number with k prime factors for every k 
below a given limit. We obtained Carmichael numbers for every k < 134 [13]. For 
k < 20, Pinch [16] has created a table of the smallest Carmichael number with k 
factors. An example for every k, 21 < k < 100, is shown in Table 1. 

In order to find larger Carmichael numbers, we switched from the PC to a 
Siemens 7 882 mainframe and soon found a number with 344 factors, published in 
1988 [13]. With a slightly improved program we found numbers with up to 3316 
factors. Some intermediate results are shown in Table 2. 
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TABLE 2. Some Carmichael numbers 
found using our previous algorithms 

A k d T 

931170240 344 1536 {419,1171,2081,29173} 
931170240 344 1531 {43,7393,2217073,2238391} 

97772875200 1034 5654 {1471,257401, 471241,9831361} 
97772875200 1034 5656 {4561,8191,287281, 383041} 
97772875200 1034 5653 {12601,93601,270271, 7261801} 

3855044793600 2017 12511 {163, 12541, 14081,532097281} 
74530866009600 3312 22722 {449, 10337, 162691,5986993} 

TABLE 3. Some medium-sized Carmichael 
numbers calculated on an IBM PS/2-70 PC 

A= 26 .32.5.711.13.17.19 = 931170240 
k = 340, K(A) = 361, N = 11858668... 98349441, d = 1504, Time = 30s 
T= { 67, 302329, 1108537, 3233231, 232792561, 

72353, 1058149, 2771341 } 

A = 26 .33.52 .72.11.13-17-19 = 97772875200 
k = 1029, K(A) = 1009, N= 56150711 ... 42742401, d = 5611, Time = 2m 57s 
T= { 97, 75583, 362121761, 905304401, 24443218801, 

7753, 1108537, 665121601, 10863652801 } 

A = 28 .34.52 .711-13-17-19.23 = 3855044793600 
k = 2009, K(A) = 2005, N = 19624530.. .79955201, d = 12429, Time = 9m 7s 
T= { 23599, 11531521, 2677114441, 16062686641, 26771144401, 

29717, 478056151, 13385572201, 20078358301, 40156716601, 
2897311, 637408201 } 

A= 29.33.52.7.11.13.17-19-23.29 = 74530866009600 
k 3305, K(A) = 3245, N = 12973148 ... 50790401, d = 22647, Time = 18 m 49 s 
7> { 37, 27373681, 1680439801, 20703018337, 232908956281, 

300151, 1433975297, 5041319401, 86262576401, 1035150916801, 
15511753 } 

A- 28 .34.52.72.11-13-17.19.23-29.31 = 24259796886124800 
k 10058, K(A) = 9895, N = 24661064 ... 20019201, d = 81488, Time = 89 m 57 s 
T= { 15534721, 937908721, 2200435091713, 189529663172851, 1155228423148801, 

125349841, 28130562253, 84235405854601, 1010824870255201, 6064949221531201, 
320576209, 1069655947361, 138627410777857 } 

In 1989 we switched back from the mainframe to an IBM PS/2-70 PC, running 
OS/2 to overcome space limitations. After developing algorithm B we found Carmi- 
chael numbers with up to k = 10058 factors [15], some of which are presented in 
Table 3. For each of these numbers, the values of A, k, and the set T are given. 
Furthermore, we list the expected size of the set S as predicted by our function 
K(A), the first eight and the last eight digits of N, the total number of digits d of 
N, and the time used to find N on an IBM PS/2-70 personal computer. The actual 
size ic of the set S used for each of these calculations is given by t = k + #T. 

The next challenge now was to find a Carmichael number with more than one 
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TABLE 4. Some of the largest Carmichael numbers 
found on an IBM RS/6000-550 workstation 

A= 210 .35 .53.72-11-13-17 19 23-29-31-37-41 43 = 94949448640728409728000 
k = 125504, K(A) = 122685, N = 11902822 .. .15488001, d = 1424198, Time = 36 m 
T= { 1599361, 31350370847401, 6593711711161695121, 

24371713, 39209074920091, 6868449699126765751, 
23295294721, 2174796688900993, 80739327075449328001, 
82848588481, 164842792779042379, 1483585135011381402001, 

1383849703063, 3391051737168871777, 5274969368929356096001, 
6555077540821 } 

A= 211.35.54.72. 112 .13-17.19-23-29.31-37.41.43 = 10444439350480125070080000 
k = 244767, K(A) = 239874, N = 41121806 ... 48640001, d = 3025356, Time = 1 h 24 m 
T= { 391387, 67962396528157, 198941701913907144193, 

1681557571, 11808850799462401, 335790874179530770001, 
11259392449, 1918804995311604401, 906635360284733079001, 
23295294721, 15110589338078884651, 21490615947489969280001, 

1011586040251, 83947718544882692501, 24176942940926215440001, 
17426255520041, 195731702001089280001 } 

A = 214 .37.54.72. 112 .132.17.19.23.29.31-37-41.43 = 9775995232049397065594880000 
k = 577424, K(A) = 566982, N = 50355100 ... 38080001, d = 7976462, Time = 4 h 10 m 
7= { 42901, 1678099850449921, 38485745905964179680001, 

52642897921, 3975800196897127, 43887745149492242718721, 
60868350721, 35570472767505649, 397786264324926638411251, 

188691887233, 16035727460818408201, 12729160458397652429160001, 
1383849703063, 9429007746961224021601, 15086412395137958434560001, 
1801502791681, 13095844093001700030001, 24138259832220733495296001 } 

A = 214.37.54.72. 112. 132 .172.19.23-29.31.37.41.43 = 166191918944839750115112960000 
k = 838670, K(A) = 823789, N = 10124726 ... 66240001, d = 12096430, Time = 6 h 40 m 
T= { 54765569, 2654367240812492801, 100183207311463005229501, 

582382369, 3028970742599032661, 2051752085738762347100161, 
33398272001, 43797414969018740017, 2107750595384026863270001, 

3933046524493, 14841956638735260034001, 38470351607601794008128001, 
1691371859298001, 64403490414511931933251 } 

A= 214 37.54-72. 112.132.17.19-23.29-31.37.41.43.47 = 459471775906321662082959360000 
k = 1101518, K(A) = 1082068, N = 70388830 ... 50240001, d = 16142049, Time = 9 h 18 m 
7= { 3747815171101, 373725218508329844001, 56274712902498733843201, 

7937871675841, 527575433460925629781, 102584112061846650235001, 
157662554664961, 1004905587544620247201, 159456093230220733440001, 

7166547582616451, 1500659010733299569153, 8309313077009578669035001, 
14386014397937074177, 25646028015461662558751, 4254368295428904278545920001 } 

million factors. We ported our program to an IBM RS/6000-550 workstation and 
finally discovered a Carmichael number with 1101518 factors. Five Carmichael 
numbers with more than 100000 factors can be found in Table 4. The computing 
times given in this table refer to an IBM RS/6000-550 workstation. This worksta- 
tion is about 80 times faster than the PC we used before. On this PC, the first 
Carmichael number from Table 4 with k = 125504 factors needed 46 hours and 33 
minutes. In any case, it should be noted that the steps C2 and C3 consume about 
98% of the listed time while the subsequent step C4 as performed using algorithm 
B produces the Carmichael numbers very quickly. 
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TABLE 5. Progress in discovering large Carmichael numbers 

Carmichael number N k d Year Discoverer 

7 31.73 15841 3 5 1910 Carmichael 
13 37 73 457 16046641 4 8 1912 Carmichael 
5 97 109 1889 99861985 4 8 1938 Poulet 
5 17 29 113 337 673 2689 169875651141505 7 15 1939 Chernick 
11 29 31 37 41 43 61 71 73 79 97 113 127 131 151 

443656337893445593609056001 15 27 1978 Yorinaga 
57736720 ... .48486881 3 77 1979 Hill 
51009765.. .51976601 3 321 1980 Wagstaff 
80194635... .30286001 4 432 1982 Woods, 

Huenemann 
43407186 ... 00000001 3 1057 1985 Dubner 
14276304... .03279041 344 1536 1988 Loh 
12831493 ... .66519553 3 3710 1988 Dubner 
24661064... 20019201 10058 81488 1989 L6h, Niebuhr 
70388830...50240001 1101518 16142049 1992 L6h, Niebuhr 

For all Carmichael numbers found by our programs, the conditions fJpET p =s 

(mod A) and fJpEST-P 1 (mod A) have been individually checked. 
Table 5 shows the world-wide progress in the search for large Carmichael numbers 

N. For the first five entries, the table contains the complete factorization of N 
together with their full decimal notation. For the later entries, we list only the first 
eight and the last eight digits of N. 

By the way, applying (4) on 

A = 215 .38.55. 74.113 v132 .172.192 .232.2931*37v41*43v47v53*59v61*67v71*73v79, 

we get K(A) = 1009441849. Therefore, if this A were used as input, we would expect 
Carmichael numbers to appear with about one billion factors. This expectation is 
in good accord with the fact that Alford, Granville and Pomerance have proved the 
existence of infinitely many Carmichael numbers [1]. 
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